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Abstract. The microwave power scattered by a circular cylinder of inhomogeneous plasma 
contained in a glass tube is computed with the aid of the Frobenius method. It  is found that 
computed and experimental values are in good agreement in the range 0.2 < l / R  i 3.0. 
Values are also computed for wavelengths of 8 mm and 3 cm for a range of collision fre- 
quencies with the electric vector parallel or perpendicular to the cylinder axis. 

1. Introduction 

Coherent scattering of microwaves by a cylindrical plasma column which is homo- 
geneous in the axial direction but has a radial density distribution has been studied many 
times. When the ratio of the plasma radius R to the free space wavelength i, is much 
greater than unity, geometrical optical theory is valid (Shmoys 1961. Heald and Wharton 
1965). If RI). is much less than unity a solution may be obtained in asymptotic form 
(Stratton 1941) but in the intermediate region where RIA is near to unity the exact 
contour problem defined by Maxwell’s equations must be solved. The Born approxima- 
tion is applicable (Midzuno 1961) if the plasma permittivity is nearly equal to that of 
free space whereas the WKBJ (Wait 1962) method may be applied for a slowly varying 
electron density profile. If the plasma is enclosed in a dielectric or glass tube both ap- 
proximations are difficult to apply, but solutions have been obtained (Kerker and 
MatijeviC 1961) by treating the plasma as a cylindrical sheet with quartic (Jones and 
Wooding 1966) or Gaussian (Lunow and Tutter 1967) electron density distribution. 
The method has been extended to six or eight sheets for a range of distributions of 
binomial form (StaniC and Wooding 1967). Another theoretical treatment made use of 
the self-consistent field (Faugeras 1967). In all these studies the electric vector has been 
parallel to the cylinder axis. 

It is now shown how the problem may be solved by using the Frobenius method to 
obtain a solution of the wave equation with the electric vector parallel or perpendicular 
to the cylinder axis. It is also shown that the cylindrical sheet technique may be used 
in a range where the Frobenius method is invalid. 

2. Theory 

It  is assumed that a linearly polarized plane electromagnetic wave is normally incident 
on a cylindrical plasma column which has an electron density distribution dependent 
only on the radius and which is enclosed in a glass tube. When the electromagnetic 
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field varies in time as exp( - iot). the electric and magnetic fields may be derived from 
the wave equations : 

For a cold plasma the spatial variation in the electron density is represented by 

which leads to a relative dielectric constant 

n,(r) 1 +i6 
n, 1 + d 2  

cr(r) = 1 -~ ~ = CO + C.,(k,r)?. 

where (3) 

ne, being the electron density on the cylinder axis. n, the critical electron density at 
frequency o, bo = neoJ’nc. and 6 = I’/O where v is the electron collision frequency for 
momentum transfer. assumed to be constant over the tube radius. We have chosen 
integral values of y which permit a range of density distributions to be examined. Solu- 
tions of equations (1) and (2) are sought when the incident electromagnetic wave has its 
electric vector parallel or perpendicular to the cylinder axis and the electron density and 
collision frequency vary over a wide range. Solutions of these equations must be obtained 
under the conditions that the transverse components of E and H a n d  the normal compo- 
nents of D and B are continuous at the plasma/glass and glasslair boundaries. 

2.1. Parallel polarization 

When the electric vector of the incident wave is parallel to the cylinder axis equation ( 1 )  
becomes 

1 Z2E, 1 “( 9) +- -+c,(u)E, = 0 
U zu au u 2  a e 2  

after introducing a new dimensionless variable U = k,r .  where k ,  = o ( ~ ~ p ~ ) ” ~ .  the free 
space wavenumber. The boundary conditions require continuity of E,  and (?E, ? r ) / p .  
The electric field is then given by 

+z 

EZ = Rn(u)cosn6. 
n = - x  

where R,(u) is a solution of the equation 

d2Rn dR, 
du du 

u 2 ~ + u ~ + ( u 2 c , ( u ) - n 2 ) R n  = o 

a n d n = O . f l .  +2.+3.etc .  
Then 

E = (0,O. E,) 

(4) 
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To an equation such as (4) the Frobenius method (Butkov 1968) may be applied with 
R,(u) = Z?=, ajuj+". The coefficients are determined by substituting these values of 
R,(u) into equation (4)  with the electron density distribution given by equation (3) :  

a ,  = O  

aZk = - - 2 + - y - 2 

2k(2n + 2k) 

for y odd 1 + C y a 2 k - y -  1 

(2k+ 1)(2n+2k+ 1)  a Z k + l  = - 

= for y even 

with a, being evaluated after imposing the boundary conditions. If instead of the 
electron density distribution which leads to equation (3 ) ,  the Bessel type distribution 

ne = n,,J0(2.405 r / R )  

is used, then the permittivity may be approximated by 

cr(r) = CO + c2u2 + c,u4 

with appropriate choice of CO, C2 and C,. Then 

a, = 0 

C 0 a 2 k  - 2 + C2a2k  - 4 + C 4 a 2 k  - 6 a2k = - 
2k(2n + 2k)  

The conditions under which equation (4) leads to convergent solutions have been 
discussed by Piaggio (1960). The coefficients of aR,/an and R ,  must converge. Since 
the former coefficient is unity this presents no problem. The latter coefficient is 

(u2cr(u) - n 2 )  

which converges for all u with cr(u) specified by equation ( 3 )  for example. 

2.2. Perpendicular polarization 

When the incident electromagnetic wave is polarized with its electric vector perpendi- 
cular to the cylinder axis. equation ( 2 )  for the magnetic field becomes 

which is solved with the condition of continuity in (aH,/ar)/c and H, at the boundaries. 
The magnetic field is then given by 

+a, 

H, = P,(u)cosnO, 
n =  - 5  

where P,(u) is a solution of the equation 

= 0. (7) 
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Then 

and 

For a collision-free plasma cr(r, o) may be zero at some radius ro .  but from Maxwell's 
equations it follows that 

f ( r , o ) E z  = 0, 

so in this case E,  is not necessarily zero and longitudinal electron plasma waves may be 
generated. 

2.3. Convergence 

If the Frobenius method is applied to equation (7) convergence is then conditional 
(Piaggio 1960). For a plasma which is loss-free (6 = v/w = 0) and has a radial dependence 
given by equation (3) the solution converges for all 

or 

I t  is limited to the range u/(k,R) 2 1 since a solution is required at U = uR = k,R. The 
range of values of u/uR over which the solutions of equation (7) are convergent is shown 
in figure 1 for values of y corresponding to various density distributions. Although 
solutions converge in the region below the curve the fields are required for values of 
u/uR 2 1 so that convergence occurs for 0 < Po < 0.5. ie for ne, < 0+5n, which is an 
underdense plasma. 

0 0 2  0.5 0.8 1.0 

Figure 1. Curve showing convergence of solutions of equation (7)  in the domain between the 
curve and coordinate axes for a loss-free plasma with perpendicular polarization Four 
values of y are shown. 
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When the collision frequency is not negligible the solutions of equation (7) converge 
for 

(1 + 6 2  -Boy + s'p; 1'2y  

(!CJ = u R (  831 + S2) 1 U <  

and i t  follows that u/uR 2 1 only if 

Bo < 81 +S2).  

Then solutions converge in the region between the curve and the 6 axis in figure 2.  
Hence it is seen that for a loss-free plasma the power series method cannot be applied 
for the case of perpendicular polarization with Po > 0.5 and Po # 1, because the series is 
no longer convergent. However a solution may be obtained by dividing the plasma 
column into a number of coaxial cylindrical sheets, assuming that the electron density 
is constant within each sheet. In a sheet of radius R,- to R, the permittivity sr is given by 

This value is closer to the real situation than the arithmetic mean value that was used by 
Lunow and Tutter (1967) or Kerker and Matijevic (1961). The boundary conditions are 
those used for equation (7). 

t 
I 

6 

Figure 2. Values of the parameters 
vergent in the region U 4 uR for a lossy plasma with perpendicular polarization. 

and S for which the solutions of equation (7)  are con- 

2.4. Electromagnetic fields at the rewiper 

Using the radiation condition (Stratton 1941) the diffraction field at a distance from the 
plasma is derived as the sum of the incident and scattered fields. 

2.4.1. Parallel polarization. The etectric field in free space at a distance RR from the 
plasma column axis is given by 

1 

E,JR,) = C r,(i"J,(k,R,) + A,H:,' ' (k ,RR) )  COS nO 
n = O  
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where 

U, = 
1 for n = 0 

2 for n = 1,2, 

and the coefficients A,, are determined by the boundary conditions. 
Then 

det M A P  
det M P  ' 

A,, = ~ 

where 

- JAkgR), - Yn(kgR), 0 

and the matrix MAP is obtained from the matrix MP by replacement of the last two terms 
in the fourth column by i"J,,(k,R,) and kfi"JA(kfRg). R ,  and R are the external and internal 
radii of the glass tube, k, is the wavenumber for glass at frequency U, whilst J ,  and Y, 
are Bessel functions of order n, with Hi') a Hankel function. Differentiation with respect 
to the argument is represented by a prime. The function SZ;  is defined by 

and the coefficient ratios aJao are obtained from the recurrence relations (5 ) .  

2.4.2 Perpendicular polarization. The magnetic field in free space at a distance R ,  from 
the cylinder axis is given by 

30 

H,(R,) = x,(i"J,(kfR,)+ B , H ~ " ( k f R R ) )  cos ne, 
n = O  

with the coefficient B, determined by the boundary conditions 

det MB" 
det M" ' 

B, = ~ 

where 

0. 
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Matrix MB" is obtained from the matrix M" by substitution of the last two terms in 

The function !& represents the normalized radial part of the H, component inside 
the fourth column by i"J,(k,R,) and i"J,',(k,R,)/k, respectively. 

the plasma, 

3. Experimental and numerical results 

Solutions of the scattering equation have been obtained for values of the parameter R/A 
in the interval 0.1 to 10.0 and for different values of the parameter Po = n,,/n,, so that 
graphs of P , / P ,  are plotted as a function of electron density, where Po is the diffracted 
power at 8 = 0" and Po is the power scattered at angle 8. The maximum values of R/A 
and n,,/n, for which the problem could be solved numerically are given by 

for parallel polarization. 
The computed scattered power is quoted in decibels if the range of values is large, 

the ratio being normalized to  the power diffracted into the forward direction. Experi- 
mental values of the scattered power are traced from oscillograms and plotted against 
time. Since the electron density falls approximately exponentially in time, the computed 
values are plotted against log Po to  facilitate comparison. 

Numerical values of the scattered power have been compared with experimental 
results obtained by scattering a collimated beam of 10 GHz or 35 GHz microwaves from 
an argon afterglow plasma. Computed values of the power scattered by homogeneous 
and inhomogeneous plasma columns are shown in figure 3. For an underdense plasma 

I * 
0.3 

IO I 0.1 0 IO I 0.1 

Figure 3. Influence of inhomogeneity of the loss-free plasma column on the computed 
scattered and diffracted powers for parallel polarization. ~ homogeneous plasma ; 
_ _ _ _  inhomogeneous plasma (Bessel distribution); RIA = 1.04; P , :  incident electromagnetic 
power; Po : diffracted EM power at 0 = 0" ; P66 : scattered EM power at 0 = 66". 



Coherent scattering by an inhomogeneous plasma column 823 

column the profiles of scattered power are of the same shape for both cases because of 
the presence of the glass tube which masks the influence of inhomogeneity on the 
scattered profiles. For an overdense plasma the scattered profiles are quite different 
and the inhomogeneity is dominant. Comparing these computed results with experi- 
mental ones obtained with 35 GHz radiation it may be seen in figure 4 that the real 
plasma column is inhomogeneous. 

30 I 
0.3 1 

I .  
100 IO I 0.1 - 

B O  

..*I 
0.2 100 . IO I 0.1 

B O  

1 Argon, 0.3 Torr 

0 
100 IO I 0.1 

B O  

( e )  

-30 i 

0 
100 IO I 0.1 

B O  

- "I 2 

-4 
Argon, 0.3 Torr 

-6 t 
Figure 4. Comparison of experimental (c ,  f) values of 35 GHz radiation scattered by a plasma 
column with those computed (a, b, d,  e) for various electron density distributions. The full 
horizontal line represents the level of the power scattered by the glass tube. Parallel polariza- 
tion and R/A = 1.04. Electron density distribution (a )  and (4 __ cosine: --:- quartic; 
- . - , - . - Bessel;(b)and(e)---linear:----parabolicn, = neo(l  - r z / R z ) ; - . - . - . -  para- 
bolic n, = ne,,( I.07rZ/R2): P, is the incident power and P, that scattered at 0 degrees. 
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For the case R/A = 1.04, scattered power profiles are computed for six possible 
electron density distributions in a loss-free plasma column. Comparing these computed 
results with a large number of experimental curves for the power scattered by the after- 
glow plasma it is seen in figure 4 that the closest fit is obtained with an electron density 
profile of the Bessel type. This is to be expected since the dominant loss process in these 
plasmas is ambipolar diffusion which results in this type of distribution (Brown 1959, 
p 49). For the same value of R/A diffracted power at 0 = 0" is computed for a lossy 
plasma and displayed in figure 5. Comparison of these curves with the experimental 
results indicates that the collision frequency is negligibly small in the afterglow argon 
plasma studied here. 

100 IO I 0.1 

BO B O  

Figure 5. Influence of the collision frequency on the diffracted power at 0 = 0" with parallel 
polarization and RIA = 1.04. The broken straight line at P,/P,, = 0.58 is the power diffracted 
by the glass tube alone. - 6 = 0.0; ---- 6 = 0.1 ; 6 = 0.5; -A-A-A- 
6 =  I . O ; - ~ - ~ - ~ - ~ =  5 . 0 ; - ~ - ~ - ~ - 6 =  10.0. 

In figures 6 and 7 are shown the numerical and experimental results for different 
values of the parameter RIA. In all of these cases there is reasonable agreement between 
numerical and experimental results. 

These numerical and experimental curves may be used in a diagnostic technique for 
the determination of the time variation of electron density in an afterglow plasma 
(Jones and Wooding 1965). For the values R/A = 1 as in figures 4, 5 ,6 ,  the rich structure 
of scattered power curves provides much more information about the plasma than in 
other cases. Computations for RIA = 2.3 and R/A = 2.92 approach the limit of validity 
of the geometrical optical approximation. I t  is seen that the power scattered by an 
overdense plasma is constant for some time although the electron concentration must 
be decaying, the reason being that the microwave beam does not penetrate completely 
through glass tube and plasma column, and these curves resemble the cut-off curves 
obtained with overdense plasma in a microwave interferometer. 

When the parameter Bo exceeds 0.5 the sheet technique is used to compute numerical 
values of the power scattered at various angles and for y = 1,2 and 4. I t  is seen then 
in figure 8 that the electron density distribution has a marked effect on the scattered 
power. Large peaks occur near to  110" with y = 1 or 4 and there is some similarity in 
the variation with angle of the scattering below 0 = 80" for y = 1 and y = 2. Experi- 
mental values for the scattered power have not been obtained with perpendicular 
polarization. 
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Computed curves Experimental curves 
lb) t 10) 

I 

B O  

( h )  

I .  . . 0 

I 01 IO 

I 10 I 0.1 

so 
Figure 6. Comparison of computed results (a, c, e, g, i) for the Bessel type of electron density 
distribution with the experimental results (b, d, h, j )  in an argon afterglow at 0.3 Torr. The 
incident radiation at 35 GHz is polarized parallel to the cylinder axis. The broken straight 
line represents the power scattered by the glass tube alone. 
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Computed curves Experimental curves 
(0) (bl  

(C) ( d )  

t (!.Is) 

-20 

-20' 

-14 

9" 
Q 
. 

9" 
9- 
. 

( e )  

'I 9" -40 
- 60 

9" -40 
- 60 

I .  L 

I 0 1  IO 

Figure 7. Comparison of computed results (a, c,  e, g, i )  for the Bessel type of electron density 
distribution with the experimental results (b .  d , j ,  h , j )  for an afterglow plasma in argon at an 
initial pressure of 1 Torr. The incident radiation of 10 GHz was polarized parallel to the 
cylinder axis. 
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30, 

i\ 
!i 
! i  
! !  
! !  
I !  
i 1, 

i !  
j !  
j 1. . !  

Scattering angle e (deg) 

Figure 8. Angular variation of the power scattered by an inhomogeneous plasma column 
in a glass tube. Solution by cylindrical sheet technique. Electric field vector polarized 
perpendicular to cylinder axis. Bo = 0,875. F = 9.6 GHz. 7 = I--: 7 = 2 - - - -: 
? = 4  

4. Conclusion 

Using the Frobenius method it has been shown that for the case of parallel polarization 
it is possible to solve the scattering equation for a wide range of values of parameters 
R/A and Bo,  the practical limit occurring at about R/A > 3. For perpendicular polariza- 
tion the convergence region has been found theoretically as a function of Bo.  Experi- 
mental results obtained with the X and Q band microwaves show a reasonable agreement 
with the computed results for the case of parallel polarization. It is seen in the computed 
results that the scattered power distribution and variation in time are very sensitive to 
the value of y. 

The computations provide a useful technique for determining the electron density 
profile in a plasma (Jones and Wooding 1965, Jones et al 1968). 
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